THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5540 Advanced Geometry 2016-2017
Solution to Quiz 2

1. (a) (i) $A B>C D$ if there exists a point E on $A B$ such that $A * E * B$ and $A E \cong C D$.
(ii) D is an interior point of an angle $\angle B A C$ if D, B are on the same side of the line $l_{A C}$ and D, C are on the same side of the line $l_{A B}$.
(iii) $\Gamma=\{X: O X \cong O A\}$. B is said to be an interior point of Γ if $O B<O A$.
(b) By axiom I3, there exist three noncollinear points on the Hilbert plane, so we have at least one point D which is not O on the space.

By axiom I1, there exists a unique line $l_{O D}$ containing O and D.
By axiom C1, there exists a unique point C on the ray $r_{O D}$ oringinated from O such that $O C \cong A B$.
Then, the circle Γ with center O and radius $O C$ is the required circle.
(c) By (b), we can construct two circles Γ_{1} and Γ_{2} such that their centers are B and C respectively and their radii are congruent to $D E$.
By axiom I1, there exists a unique line l containing C and B.
By axiom C1, the circle Γ_{2} intersects the ray $r_{C B}$ at a unique point F and intersects the ray opposite to $r_{C B}$ at a unique point G.

Note that $C F \cong D E$ and $D E>B C$, therefore we have $F * B * C$ which means $C F>B F$. However, the radius of Γ_{1} is congruent to $D E$ as well as $C F$, therefore $B F$ is less than the radius of Γ_{1} and F is an interior point of Γ_{1}.

Also, by the construction of G, we know that G and B are on the opposite side of C. Therefore, we have $B * C * G$ which implies that $B G>C G$. However, the radius of Γ_{1} is congruent to $D E$ as well as $C G$, therefore $B G$ is greater than the radius of Γ_{1} and G is an interior point of Γ_{1}.

By axiom \mathbf{E}, Γ_{1} and Γ_{2} will intersect. Suppose A is an intersection point, then $\triangle A B C$ is required triangle.
2. (a) Let $f(z)=\frac{1}{z}$. Then we have

$$
\left.\begin{array}{rl}
{\left[f\left(z_{1}\right), f\left(z_{2}\right), f\left(z_{3}\right), f\left(z_{4}\right)\right]} & =\left(\frac{f\left(z_{4}\right)-f\left(z_{2}\right)}{f\left(z_{1}\right)-f\left(z_{2}\right)}\right) /\left(\frac{f\left(z_{4}\right)-f\left(z_{3}\right)}{f\left(z_{1}\right)-f\left(z_{3}\right)}\right) \\
& =\left(\frac{\frac{1}{z_{4}}-\frac{1}{z_{2}}}{\frac{1}{z_{1}}-\frac{1}{z_{2}}}\right) /\left(\frac{\frac{1}{z_{4}}-\frac{1}{z_{3}}}{\frac{1}{z_{1}}-\frac{1}{z_{3}}}\right) \\
& =\left(\frac{\frac{z_{2}-z_{4}}{z_{2} z_{4}}}{\frac{z_{2}-z_{1}}{z_{1} z_{2}}}\right) /\left(\frac{z_{3}-z_{4}}{z_{3} z_{4}}\right. \\
\frac{z_{3}-z_{1}}{z_{1} z_{3}}
\end{array}\right) .
$$

Therefore, $f(z)=\frac{1}{z}$ preserves four point ratios.
(b) we have

$$
\begin{aligned}
{\left[z_{2}, z_{1}, z_{4}, z_{3}\right] } & =\left(\frac{z_{3}-z_{1}}{z_{2}-z_{1}}\right) /\left(\frac{z_{3}-z_{4}}{z_{2}-z_{4}}\right) \\
& =\left(\frac{z_{2}-z_{4}}{z_{2}-z_{1}}\right) /\left(\frac{z_{3}-z_{4}}{z_{3}-z_{1}}\right) \\
& =\left(\frac{z_{4}-z_{2}}{z_{1}-z_{2}}\right) /\left(\frac{z_{4}-z_{3}}{z_{1}-z_{3}}\right) \\
& =\left[z_{1}, z_{2}, z_{3}, z_{4}\right] \\
& =\lambda
\end{aligned}
$$

Therefore, $\left[z_{1}, z_{2}, z_{3}, z_{4}\right]$ is real $\Leftrightarrow \lambda$ is real $\Leftrightarrow\left[z_{2}, z_{1}, z_{4}, z_{3}\right]$ is real.
3. If $|z|=1$, then

$$
\begin{aligned}
|w|^{2} & =w \bar{w} \\
& =\left(\lambda \frac{z-a}{\bar{a} z-1}\right)\left(\bar{\lambda} \frac{\bar{z}-\bar{a}}{a \bar{z}-1}\right) \\
& =\lambda \bar{\lambda} \frac{|z|^{2}-a \bar{z}-\bar{a} z+|a|^{2}}{|a|^{2}|z|^{2}-a \bar{z}-\bar{a} z+1} \\
& =1
\end{aligned}
$$

The last equality follows from the fact that $|\lambda|=1$ and the assumption that $|z|=1$. Then, $|w|^{2}=1$ implies $|w|=1$.

